Answer :
The easiest way to display this information is through graphing the function. I have graphed it using a program and it is attached below this explanation. If you wanted to graph this function, you would need to find the roots (x-intercepts), y-intercepts, and any addition points. You could also graph it using symmetry because the function is 1:1, so it is symmetrical about the origin. Let’s use the graph to answer the questions.
a.) Viewing the function, it is increasing from the interval (-♾️, -2.303). The function is decreasing at the interval (-2.303, 1.303).
b.) The local maximum value is at 32.936
The local minimum is at -13.936.
c.) The infliction point is at (0,0)
Interval for concave up: (0, 2.342)
Interval for concave down: (-3.842, 0)
PLEASE NOTE: these are exact values according to the graph, so if it marks them wrong, it probably wants them rounded to the nearest whole.
a.) Viewing the function, it is increasing from the interval (-♾️, -2.303). The function is decreasing at the interval (-2.303, 1.303).
b.) The local maximum value is at 32.936
The local minimum is at -13.936.
c.) The infliction point is at (0,0)
Interval for concave up: (0, 2.342)
Interval for concave down: (-3.842, 0)
PLEASE NOTE: these are exact values according to the graph, so if it marks them wrong, it probably wants them rounded to the nearest whole.

Answer:
[tex]\textsf{(a)} \quad \textsf{Increasing}: \quad \left(-\infty, \dfrac{-1-\sqrt{13}}{2}\right) \cup \left(\dfrac{-1+\sqrt{13}}{2}, \infty\right)[/tex]
[tex]\textsf{Decreasing}: \quad \left(\dfrac{-1-\sqrt{13}}{2} < x < \dfrac{-1+\sqrt{13}}{2}\right)[/tex]
[tex]\textsf{(b)} \quad \textsf{Minimum}: \quad \left(\dfrac{-1-\sqrt{13}}{2},\dfrac{19+13\sqrt{13}}{2}\right)[/tex]
[tex]\textsf{Maximum}: \quad \left(\dfrac{-1+\sqrt{13}}{2},\dfrac{19-13\sqrt{13}}{2}\right)[/tex]
[tex]\textsf{(c)} \quad \textsf{Point of inflection}: \quad \left(-\dfrac{1}{2}, \dfrac{19}{2}\right)[/tex]
[tex]\textsf{Concave up}: \quad \left(-\dfrac{1}{2}, \infty\right)[/tex]
[tex]\textsf{Concave down}: \quad \left(- \infty,-\dfrac{1}{2}\right)[/tex]
Step-by-step explanation:
Given function:
[tex]f(x) = 2x^3 + 3x^2-18x[/tex]
Part (a)
[tex]\textsf{A function is \textbf{increasing} when the \underline{gradient is positive}}\implies f'(x) > 0[/tex]
[tex]\textsf{A function is \textbf{decreasing} when the \underline{gradient is negative}} \implies f'(x) < 0[/tex]
Differentiate the given function:
[tex]\implies f'(x)=3 \cdot 2x^{3-1}+2 \cdot 3x^{2-1}-18x^{1-1}[/tex]
[tex]\implies f'(x)=6x^2+6x-18[/tex]
Complete the square:
[tex]\implies f'(x)=6(x^2+x-3)[/tex]
[tex]\implies f'(x)=6\left(x^2+x+\dfrac{1}{4}-3-\dfrac{1}{4}\right)[/tex]
[tex]\implies f'(x)=6\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{39}{2}[/tex]
[tex]\implies f'(x)=6\left(x+\dfrac{1}{2}\right)^2-\dfrac{39}{2}[/tex]
Increasing
To find the interval where f(x) is increasing, set the differentiated function to more than zero:
[tex]\implies f'(x) > 0[/tex]
[tex]\implies 6\left(x+\dfrac{1}{2}\right)^2-\dfrac{39}{2} > 0[/tex]
[tex]\implies 6\left(x+\dfrac{1}{2}\right)^2 > \dfrac{39}{2}[/tex]
[tex]\implies \left(x+\dfrac{1}{2}\right)^2 > \dfrac{39}{12}[/tex]
[tex]\implies \left(x+\dfrac{1}{2}\right)^2 > \dfrac{13}{4}[/tex]
[tex]\textsf{For\;\;$u^n > a$,\;\;if\;$n$\;is\;even\;then\;\;$u < -\sqrt[n]{a}$\;\;or\;\;$u > \sqrt[n]{a}$}.[/tex]
Therefore:
[tex]x+\dfrac{1}{2} < -\sqrt{\dfrac{13}{4}}\implies x < \dfrac{-1-\sqrt{13}}{2}[/tex]
[tex]x+\dfrac{1}{2} > \sqrt{\dfrac{13}{4}}\implies x < \dfrac{-1+\sqrt{13}}{2}[/tex]
So the interval on which function f(x) is increasing is:
[tex]\left(-\infty, \dfrac{-1-\sqrt{13}}{2}\right) \cup \left(\dfrac{-1+\sqrt{13}}{2}, \infty\right)[/tex]
Decreasing
To find the interval where f(x) is decreasing, set the differentiated function to less than zero:
[tex]\implies f'(x) < 0[/tex]
[tex]\implies 6\left(x+\dfrac{1}{2}\right)^2-\dfrac{39}{2} < 0[/tex]
[tex]\implies \left(x+\dfrac{1}{2}\right)^2 < \dfrac{13}{4}[/tex]
[tex]\textsf{For\;\;$u^n < a$,\;\;if\;$n$\;is\;even\;then\;\;$-\sqrt[n]{a} < u < \sqrt[n]{a}$}.[/tex]
Therefore:
[tex]x+\dfrac{1}{2} > -\sqrt{\dfrac{13}{4}}\implies x > \dfrac{-1-\sqrt{13}}{2}[/tex]
[tex]x+\dfrac{1}{2} < \sqrt{\dfrac{13}{4}}\implies x < \dfrac{-1+\sqrt{13}}{2}[/tex]
So the interval on which function f(x) is decreasing is:
[tex]\left(\dfrac{-1-\sqrt{13}}{2} < x < \dfrac{-1+\sqrt{13}}{2}\right)[/tex]
Part (b)
To find x-coordinates of the local minimum and maximum set the differentiated function to zero and solve for x:
[tex]\implies f'(x)=0[/tex]
[tex]\implies 6\left(x+\dfrac{1}{2}\right)^2-\dfrac{39}{2} =0[/tex]
[tex]\implies \left(x+\dfrac{1}{2}\right)^2 =\dfrac{13}{4}[/tex]
[tex]\implies x=\dfrac{-1-\sqrt{13}}{2},\;\;\dfrac{-1+\sqrt{13}}{2}[/tex]
To find the y-coordinates of the turning points, substitute the found values of x into the function and solve for y:
[tex]\implies f\left(\dfrac{-1-\sqrt{13}}{2}\right)=\dfrac{19+13\sqrt{13}}{2}[/tex]
[tex]\implies f\left(\dfrac{-1+\sqrt{13}}{2}\right)=\dfrac{19-13\sqrt{13}}{2}[/tex]
Therefore:
[tex]\textsf{Minimum}: \quad \left(\dfrac{-1-\sqrt{13}}{2},\dfrac{19+13\sqrt{13}}{2}\right) \approx (-2.30, 32.94)[/tex]
[tex]\textsf{Maximum}: \quad \left(\dfrac{-1+\sqrt{13}}{2},\dfrac{19-13\sqrt{13}}{2}\right) \approx (1.30, -13.94)[/tex]
Part (c)
At a point of inflection, f''(x) = 0.
To find the point of inflection, differentiate the function again:
[tex]\implies f''(x)=12x+6[/tex]
Set the second derivative to zero and solve for x:
[tex]\implies f''(x)=0[/tex]
[tex]\implies 12x+6=0[/tex]
[tex]\implies x=-\dfrac{1}{2}[/tex]
Substitute the found value of x into the original function to the find the y-coordinate of the point of inflection:
[tex]\implies f\left(-\dfrac{1}{2}\right)=\dfrac{19}{2}[/tex]
Therefore, the inflection point is:
[tex]\left(-\dfrac{1}{2}, \dfrac{19}{2}\right)[/tex]
A curve y = f(x) is concave up if f''(x) > 0 for all values of x.
A curve y = f(x) is concave down if f''(x) < 0 for all values of x.
Concave up
[tex]\implies f''(x) > 0[/tex]
[tex]\implies 12x+6 > 0[/tex]
[tex]\implies x > -\dfrac{1}{2}[/tex]
[tex]\implies \left(-\dfrac{1}{2}, \infty\right)[/tex]
Concave down
[tex]\implies f''(x) < 0[/tex]
[tex]\implies 12x+6 > 0[/tex]
[tex]\implies x < -\dfrac{1}{2}[/tex]
[tex]\implies \left(- \infty,-\dfrac{1}{2}\right)[/tex]


